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We present a novel, multi-stage registration method based on Laws' texture features. In 
general, a large number of texture features may be extracted from the original intensity 
images. For each of the texture features, a criterion function that measures the similarity 
between the images may be derived. The proposed registration method consists of two major 
steps. In the first step, a data set of images with the corresponding gold standard is used. In 
this step, the selection and ranking of the texture features for registration is made. The 
selection and ranking of the features is based on their robustness, accuracy and capture range. 
The selected features are then entered in the second step, where the actual registration is 
performed using a sequence of registration stages. Our method is based on the selection of the 
most robust feature for the first registration stage and the selection of accurate feature(s) for 
the subsequent stages. The texture features are daisy-chained so that the accuracy of the 
previous feature is sufficient for the capture range of the next feature. We tested our method 
on 11 2D image pairs containing Digital Reconstructed Radiographs (DRR) and Electron 
Portal Imaging (EPI) modalities, which were difficult to register using intensity features 
alone. With our method we have successfully registered 75% of the initial displacements, 
ranging from 5 to 7.5 mm, with the target-registration error below 3 mm, whereas the 
traditional intensity-based approach delivered only 15% successfully registered cases. 

1. Introduction 

Clinical diagnosis, as well as therapy planning and evaluation, rely increasingly on 
information integration, using multiple images of different modalities. For example, in 
radiation-therapy planning a CT (computer tomography) scan is needed for the dose-
distribution calculations, while the contours of the target lesion are often best outlined on an 
MRI (magnetic resonance image) [1]. One of the fundamental tools of information integration 
is image registration. The detailed classifications of registration techniques applied to medical 
images have been reviewed in a number of surveys [2,3,4,5,6,7].  

In general, image registration is implemented as an optimization process for finding 
the transformation parameters that maximize or minimize a criterion function (CF) that 
measures the similarity between the images. There are several different methods for 
computing a CF. The methods can be classified into two categories according to the features 
used: geometrical-feature-based and intensity-based methods [8]. 

Numerous examples in the literature show promising results for registration based on 
geometrical features [1,9,10,11]. However, geometrical features are obtained through a 
segmentation step, before the actual registration is performed. Segmentation is, by itself, 
already a complex and tedious task, and therefore the success of geometrical-feature-based 
registration is mainly dependent on the success of the segmentation step. Moreover, the 
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precise segmentation of anatomical geometrical features is generally difficult to automate. 
 Intensity features [12], in contrast to geometrical features, do not require 

segmentation, and therefore intensity-based registration can be fully automated. However, 
intensity features do not explicitly show structural information, which may be crucial for the 
registration of some image modalities. In those cases, intensity features alone may not be 
sufficient for the registration. This may be due to image artifacts, low image quality, a 2D 
projection of 3D data or a low image overlap [8,13,14,15,16]. 
 An alternative approach to registration is texture features. Texture features are 
frequently used in computer vision for image analysis, synthesis and recognition. Texture-
feature-based image registration is rarely used, but, according to the literature, some 
experiments show that it delivers promising results in the case of poor-quality ultrasound 
images [13,14]. A special class of texture-based approaches described in the literature 
[16,17,18,19,20,21] aims to combine the image gradient and edge information with the 
intensity.  

The appeal of texture features is that they explicitly show the local structures 
contained in an image, in a similar way to geometrical features. On the other hand, they can 
easily be automated, in a similar way to intensity features. Nevertheless, the selection of the 
appropriate texture features is crucial for a successful registration. Different texture features 
have significantly different properties, and therefore the criterion functions based on them 
may have very different properties. In particular, when used for registration, they may differ 
in terms of robustness, accuracy and capture range, and therefore a tool for the selection of the 
features is needed.  

In this paper we propose a method consisting of an algorithm for the selection of the 
texture features and an accompanying algorithm for their use. Our method is based on an 
analysis of the features on a data set of images with the corresponding gold standards (GSs). 
We expect that such a procedure would have to be done for each class of registration tasks, as 
the feature selection is valid only for a certain combination of modalities and, probably, only 
for certain anatomical structures. On the other hand, texture features enable us to do the 
registration in a similar way as with intensity features; however, they have some potential 
with image modalities, where the intensity features fail.  

To select the appropriate texture features for registration we propose an extended 
protocol for the evaluation of the similarity measures for rigid registration, originally devised 
by Škerl et al. [22]. The evaluation protocol assesses the quality of the similarity measure 
used in a specific registration problem prior to the registration. This is done by evaluating the 
behavior of the similarity measure for a set of simulated transformations. The evaluation of a 
similarity measure includes the three main parameters: accuracy, robustness and capture 
range.  

This evaluation gives us the basic information needed for the selection of the texture 
features, which is done once on a representative data set of image pairs, with the 
corresponding gold standard, prior to the registration. Evaluation also provides feedback on 
the appropriateness of the selected features, and, indirectly, provides an estimate of how well 
such registration will perform, when done on the images with similar characteristics.  

Following the feature selection, the actual registration is performed using a sequence 
of stages, where different pre-selected texture features are used. Our method is based on the 
use of the most robust feature in the first stage and the use of more accurate feature(s) in the 
subsequent stages. In short, the texture features are daisy-chained, so that the accuracy of the 
previous feature is sufficient for the capture range of the next feature.  

The experiments were performed on 11 pairs of DRR (Digital Reconstructed 
Radiograph) and EPI (Electron Portal Imaging) images of the pelvis. DRR images are usually 
obtained in advance of radiotherapy treatment; they are used for therapy planning and are 
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essentially 2D projections of 3D CT volumes. Therefore, their basic content is the same as the 
content of CT images. On the other hand, the EPI images are obtained during the treatment. 
The same radiation source is used for image acquisition as for the therapy itself. First, a low 
dose is used to acquire an image, which is then checked against the DRR image for proper 
patient alignment. If the patient is positioned within the therapy-specific tolerances, the 
radiotherapy is performed, this time using a more powerful beam. Otherwise, the position of 
the patient is corrected. Portal imaging is an important method for measuring and 
documenting the extent of the geometric treatment’s accuracy [23]. 
 The main aim of the radiation therapy is to deliver a prescribed radiation dose as 
accurately as possible to a tumor region while minimizing the dose’s effect on the neighboring 
normal tissues. Therefore, proper patient positioning is extremely important and DRR/EPI 
registration could be of significant help in this task. The imaging setup for the acquisition of 
EPI images is specialized for the therapy, not for the image-based diagnosis. Due to the 
specifics of the EPI devices (mega-volt beam) the contrast of the EPI images is low, as the 
different tissues exhibit only small differences in their absorption coefficients.  Therefore, 
anatomical structures are not clearly visible, and some are not visible at all, which makes 
some of the frequently used registration methods (e.g., intensity-based registration) 
inefficient. Texture features, on the other hand, extract local structural information and may 
provide better results on such images.  

The remainder of the paper is organized as follows. First, the evaluation protocol for 
the similarity measures is described, along with our modifications and extensions. Then, the 
texture features used in our tests are introduced, followed by an explanation of the multi-stage 
registration algorithm. Next, the data set and the experimental design are presented, and the 
results of the tests are described and discussed. Finally, we present some conclusions 
regarding the proposed method.  

2. Materials and methods 

During the selection step we need to obtain information about the appropriateness of each of 
the texture features for a given registration problem. For this task we extended the protocol for 
the evaluation of the similarity measures for rigid registration [22]. The evaluation protocol is 
applied to a data set of image pairs for which we have a gold standard. It has been tested for 
various multi-modal rigid-registration tasks [22,24,25]. The output of the evaluation protocol 
is the parameters that measure the appropriateness of the criterion functions for a given 
registration task. In the case of texture-based registration, the texture feature itself forms a part 
of the criterion function. Therefore, the evaluation protocol is also used to evaluate the texture 
features.  

The protocol is briefly explained in the following section however, for details the 
reader is referred to [22].  

2.1. Evaluation protocol 

The evaluation procedure is as follows. The continuous K-dimensional space of the 
transformation parameters is first normalized, so that equal changes to each of the parameters 
in the normalized parametrical space produce the same mean voxel shift. K depends on the 
transformation model used, for example, K=6 for the 3D, and K=3 for the 2D rigid 
transformation models, respectively. Next, the normalized K-dimensional space is "probed" 
by N randomly selected sampling lines. The lines are positioned in such a way that their 
intersection points with a hyper-sphere with radius R are uniformly distributed on the surface 
of the hyper-sphere. All the sampling lines intersect in the gold-standard (GS) transformation, 
which corresponds to the aligned position of two images. Each sampling line is subsequently 
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sampled by M equidistant points and the step size between the points is defined as 2R/M. Let 
us denote X0 as the origin or GS transformation and Xn,m as one of the sampled points. Then 
each of the Xn,m represents a K-dimensional vector of the transformation parameters (see 
Fig.1(The figure is reproduced from [22])).  

 
 

Fig. 1. 2D parametrical space, sampled by N lines and M points per line. The maximum 
displacement from the GS is denoted by R, which is the radius of the K-dimensional hyper-
sphere. M and R define the step size between sampling points: 2R/M. 

 
  

The normalization parameters used to generate the sampling lines for the image pairs 
used in our experiments are listed in Table 1. For a detailed explanation of the parameters, see 
[22].  
 

 
Table 1. Image sizes, pixel sizes, translation and rotation units of normalized parametrical 
space, radius R, number of sampling lines N, number of points along a line M and step size 
between two sampling points δ. 

 
 

Image size 
(mm) 

Pixel size 
(mm) Image 

pair 
X Y X Y 

Unit 
(mm) 

Unit 
(rad) 

R(mm) N M δ(mm) 

01 203 170 0.52 0.52 17.0 0.13 51.0 10 400 0.26 
02 205 179 0.52 0.52 17.9 0.13 53.7 10 400 0.27 
03 258 190 0.52 0.52 19.0 0.12 57.0 10 400 0.29 
04 203 151 0.52 0.52 15.1 0.12 45.3 10 400 0.23 
05 246 140 0.52 0.52 14.0 0.10 42.0 10 400 0.21 
06 194 165 0.52 0.52 16.5 0.13 49.5 10 400 0.25 
07 254 173 0.52 0.52 17.3 0.11 51.9 10 400 0.26 
08 201 162 0.52 0.52 16.2 0.13 48.6 10 400 0.24 
09 206 123 0.52 0.52 12.3 0.10 36.9 10 400 0.18 
10 248 188 0.52 0.52 18.8 0.12 56.4 10 400 0.28 
11 195 107 0.52 0.52 10.7 0.10 32.1 10 400 0.16 
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The original evaluation protocol was modified for a more efficient evaluation of a 
large number of criterion functions, which is the case when texture features are evaluated. The 
modifications are detailed in [26]; here we provide just a brief summary. The modification 
was implemented using Halton quasi-random sampling instead of pseudo-random sampling. 
The results obtained using quasi-random sampling were compared to the results of pseudo-
random sampling, which is used in the original version of the protocol. We found that with the 
use of quasi-random sampling the number of sampling lines for the 2D registration task can 
be significantly lower to obtain results that are comparable to the results obtained using the 
original protocol. 
 In the evaluation protocol each sampling line provides a transformation profile for a 
similarity measure, which in our case includes a chosen texture feature. To observe the 
behavior of such a similarity measure, three parameters are used: the accuracy (ACC), the risk 
of non-convergence (RON) and the capture range (CR). The accuracy, as defined in [22], is 
the root-mean-square distance between the maximum value Xn,max of the criterion function and 
the origin X0 on each of the n sampling lines: n = 1,2,…N. For the image pair i , the ACC

i is 
calculated as:  
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The risk of non-convergence RON(r) is defined as the average of the positive gradients 

dn,m within a distance r from each of the N global maxima. For the image pair i , the RON
i is 

calculated as:  
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In our case, r=R, as specified in Table 1, and therefore we use RON=RON(R) 
throughout the paper.  

In addition to the values of RON
i and ACC

i, we computed the standard deviations 

i
RON

σ  and i
ACC

σ among the sampling lines for each image pair.  

 The capture range (CR) is defined as the smallest of the N distances between the 
positions of global maxima and the closest local maximum Xn,loc along each line. For the 
image pair i, the CR

i is calculated as follows:  
 

 ,max ,min( )i

n n loc
n

CR X X= −  (3) 

 
To assess the appropriateness of a texture feature for the registration of a given image 

pair we augmented the original evaluation protocol with a definition of the quality (Q) of a 
feature. There are two basic quality indicators for each feature. First, it can have a low risk of 
non-convergence. This risk is manifested through a low RON value and a low deviation of the 
RON values among the sampling lines. Therefore, we define the i

RONQ  for the image pair i  as:  
 

 1
1 2( ) ,

ii i RON
RON i

Q RON
RON

σ
α α −= +  (4) 

where i
RON  is the mean value of i

RON , calculated across all the sampling lines for the 
image pair i , i

RON
σ  is the standard deviation of i

RON , and 1α  and 2α  are the weights, which 

were set to 1 in our experiments. Essentially, RONQ  contains both the actual risk of non-
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convergence and its consistency among the sampling lines. By adjusting 1α  and 2α  we were 

able to place greater emphasis on either of those two components.  
The second quality of a texture feature is related to its ability to register the images 

accurately. This ability is manifested through low ACC  values and a low deviation among 
the sampling lines. Therefore, we define the ACCQ  for the image pair i  as:  

 1
1 2( )

ii i ACC
ACC i

Q ACC
ACC

σ
β β −= + ,  (5) 

 

where i
ACC  is the mean value of i

ACC , calculated across all the sampling lines for the 
image pair i , iACC

σ  is the standard deviation of i
ACC , and 1β  and 2β  are the weights, which 

were set to 1 in our experiments. 1β  and 2β  have the same effect on 
ACCQ  as 1α  and 2α  have 

on 
RONQ .  

In the rest of the paper we use the following terminology: the feature with a small 
value of RON is said to be robust; the feature with a small value of ACC is said to be 
accurate.  
 

2.2. Texture features used for registration 

For texture-feature-based registration we first extract the texture features from the images. In 
our work we use multi-scale Laws' texture coefficients, yielding in total 48 different texture-
feature images. Each texture-feature image can be registered in the same way as intensity 
images and the intensity image can be treated simply as one additional feature image.  

The same texture features were extracted from both modalities of each image pair. In 
the registration step we considered only the registration of the same texture features.  

The texture features used in our work are all rotationally invariant. We would expect 
that texture features that depend on the angle would perform poorly, since we aim to register 
both the spatial and the rotational misalignments. This was also confirmed in our preliminary 
tests, leading us to the choice of rotationally invariant Laws’ texture features.  

2.2.1. Laws' texture features 

The 2D Laws’ filter masks [27] are derived from a set of 1D filters, where each of the 1D 
filters extracts a certain texture feature from an image. These features are: level (L), edge (E), 
spot (S), wave (W) and ripple (R). For example, the 1D 5-sample filter masks are:  
 

L5=[1 4 6 4 1]   

E5=[-1 -2 0 2 1]  

S5=[-1 0 2 0 -1]  

W5=[-1 2 0 -2 1] 

R5=[1 -4 6 -4 1].  

 
According to Laws, the most useful texture features are obtained from a combination 

of E-edge, S-spot and L-level filter masks [28]. On the basis of this we limited ourselves to 
those texture features. By convolving these filter masks with each other, a set of symmetric 
and anti-symmetric filters are obtained. Each of the E_L, S_E and S_L are added to their 
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transposed pairs L_E, E_S and L_S, respectively, thus generating rotationally invariant 
texture features. To deal with structures that have different anatomical sizes, we 
systematically generate texture features for the sizes n=1,5,10 and 20 mm by re-sampling the 
original 5-sample filter masks E5, L5 and S5 to a window size n. In this way 12 different 
texture features are obtained. An example of the 1D filter masks ’L ’, ’E’ and ’S’ of size 20 
mm is given in (Fig. 2).  

 

 
 

Fig. 2. a) Filter mask ‘L’, the pixel size in the x direction was 0.56 mm, therefore 20mm/0.56 
mm = 36 units (pixels). The mask was obtained with the interpolation of the original ‘L’ mask 
of size 5 units. b) Filter mask ‘E’ of size 36 units. The mask was obtained with the 
interpolation of the original ‘E’ mask of size 5 units. c) Filter mask ‘S’ of size 36 units. The 
mask was obtained with interpolation of the original ‘S’ mask of size 5 units. 

 
 
Additionally, we apply a different amount of local Gaussian smoothing to each of the 

texture features. We use the Gaussian kernel of size 1, 5, 10 and 20 mm, where the width of 
the filters was w=6σ. A combination of 12 texture features and 4 different smoothing kernels 
yields a final number of 48 texture-energy features. The combinations of features are shown in 
Table 2. Finally, the extreme 2% of the values of each texture-energy image are saturated, to 
account for the potential intensity artifacts, and the rest are scaled and quantized to 8 bits.  

 
Table 2. Filter combinations and their sizes. There were 48 combinations, yielding 48 Laws’ 
texture features. 
 
 

Combinations of 
Laws filter masks 

The size n of Laws 
filter masks [mm] 

The size w of Gaussian 
kernel [mm] 

EnLn_LnEn 
SnLn_LnSn 
EnSn_SnEn 

1,5,10 and 20 
1,5,10 and 20 
1,5,10 and 20 

1,5,10 and 20 
1,5,10 and 20 
1,5,10 and 20 

 

2.3. Registration 

The core of our registration procedure, for both the texture-based and intensity-based 
registrations, is based on Powell’s [29] optimization method, which aims to maximize the CF, 
which in turn measures the similarity between a pair of images for a particular set of 
transformation parameters. We use a rigid-transformation model with three degrees of 
freedom (translations in the x and y directions and rotation). The optimization method adjusts 
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the transformation parameters until the value of a criterion function does not increase more 
than a pre-defined tolerance value.  

We chose mutual information (MI) [12] as a metric to measure the similarity between 
the images:  
 
 ( ) ( ) ( ) ( )MI A B H A H B H A B, = + − ,  (6) 

 
where H ( A ) and H ( B ) are the Shannon marginal entropies of the image features for both 
of the images and H ( A B, ) is their joint entropy.  

MI is computed based on histograms of the images involved and 2D joint histograms 
obtained using a partial volume interpolation. 

Due to the relatively small dimensions of the input images (see Table 1) the 2D joint 
histogram is relatively sparse. Therefore, the probability distributions were estimated using 
the Parzen kernel estimator. The Parzen kernel was applied to the 2D joint histograms, 
quantized into 256x256 bins. Each joint histogram was created by adding an ( )i j,  point for 
every pair of corresponding pixels in the overlap region, where i  was the pixel value in the 
reference image, and j  was the interpolated pixel value of the floating image.  

2.4. Multi-stage registration method 

The proposed multi-stage registration algorithm is made up of two major steps. The first step 
is the selection of texture features on a training data set of image pairs with the gold standard. 
The second step is the actual registration, which is done in multiple stages. The choice of 
features for each of the stages depends on the results of the selection step.  

2.4.1. Selection step 

In the selection step the texture features are extracted from all the images from the training 
data set. Next, the extended evaluation protocol (Section 2.1) is used to check which features 
are the most appropriate for a given registration task. It is assumed that the images from the 
training data set are representative for the given registration problem. The output of the 
selection step is a list of features sorted by their qualities 

RONQ  and 
ACCQ . The selection step 

is summarized in Algorithm 1.  
 
 
Algorithm 1: Selection step 
 
Input: Training data set with provided GS 
Output: Texture feature 0, ACC0, CR0, texture feature 1, ACC1,... texture feature n, ACCn 

1: Define a bank of texture features that are to be considered for texture-based registration. 
2: for  Each image pair i from the data set do 

3:        Extract all texture features. 
4: Use modified evaluation protocol for similarity measures to obtain ACC

i Eq.(1), RON
i 

Eq.(2) and CR
i Eq.(3) values and their standard deviations. 

5: Evaluate the quality of each texture feature, based on RON
i, ACC

i and their standard 
deviations, using Eq.(4) and Eq.(5). 

6: Sort the quality values for i

RONQ  and i

ACCQ  in descending order. 

7: For both i

RONQ  and i

ACCQ  establish four quality classes, corresponding to four quartiles. 

8: end for 
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9: for all Texture features do 
10:  Count the occurrences of a texture feature in each of the quality quartiles across all 

image pairs, separately for i

RONQ  and i

ACCQ .  

11: Calculate ACC, RON and CR for the texture feature as mean values of ACC
i, RON

i and 
CR

i across image pairs, respectively. 
12: end for 

13: Choose the most robust texture feature: the one which most frequently appears in the 
highest-quality quartile, according to i

RONQ . The estimation of the largest displacement 

that the registration will be able to handle is given by CR of the chosen feature. 
14: if ACC of selected feature is satisfactory then 
15: One-stage registration using only the most robust feature will be sufficient. 
16: Exit the selection algorithm. 
17: end if 

18: Let ACC0 be the value of ACC and CR0 the value of CR for the chosen feature. 
19: Let n=1. 
20: repeat 
21:  Find the most accurate feature: the one which most frequently appears in the highest-

quality quartile according to i

ACCQ . 

22: if ACCn< ACCn-1 and CRn > ACCn-1+ACCn then 
23:  The found feature is the feature of the n-th registration stage. 
24:   Let ACCn be the ACC of the chosen feature. 
25:   Let n=n+1. 
26: else 
27:  Mark this feature as a-priori inappropriate for registration at the n-th stage. 
28: end if 
29: until The texture bank is exhausted or the ACCn is satisfactory.  
 
 
 

The algorithm, as formulated, allows either single-stage or multi-stage registration. If 
the accuracy of the most robust texture feature is adequate, the algorithm will recommend 
single-stage registration. If the accuracy after the first stage is inadequate, the algorithm will 
try to find the most suitable texture feature for the next stage. The first condition in line 22 
ensures that the added stage will register images with a higher expected accuracy, while the 
second condition in line 22 ensures that the stages will be added in a daisy-chain manner. 
Daisy-chaining requires that the feature at the stage n  has a capture range of at least 

1n nACC ACC− + , as shown in Fig. 3. In this way we can expect that the registration will not 

break during the transition between stages.  
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Fig. 3. Schematic representation of Algorithm 1 for a two-stage case. Two criterion functions, 
corresponding to the robust and accurate texture features, respectively, are shown. GS denotes 
the gold-standard position. CR0 and CR1 denote the capture ranges of the robust and accurate 
features, respectively. GM0 and GM1 denote the global maxima of the robust and accurate 
features, respectively. 
 
 

Note that Algorithm 1 is used only once when a new registration task is encountered. 
For example, a new clinical problem, new image modalities, etc. Algorithm 1 assumes that we 
have obtained values of i

RONQ  and i

ACCQ  for each image pair, which in turn requires that the 
full evaluation protocol, as defined in Section 2.1, is performed on a supplied image data set 
with the gold standard available. It is obvious that this is not a task that is performed 
frequently.  

Additionally, as a side effect of calculating RONQ  and ACCQ  for every texture feature 

and every image pair, we can estimate how successful the final registration is expected to be. 
If we examine RONQ  and ACCQ  for the selected features, we can predict on which images from 

the data set the registration will fail. This can also serve as a guideline as to how 
representative is the available data set for the given class of registration problems. If there is a 
large number of potential failures, then the data set is either inconsistent and therefore poorly 
represents the registration task, or the number of texture features is too small and does not 
include features that would be appropriate for the given class of registration problems.  

2.4.2. Registration step 

The registration step is performed whenever a new pair of images for registration is 
obtained. The guidelines for the registration are set in the selection step by Algorithm 1 and 
the registration algorithm follows those steps to obtain the final registration results. The 
registration step is presented in Algorithm 2.  
 
Algorithm 2: Registration step 
 
Input: Texture feature 0, ACC0, CR0, texture feature 1, ACC1,... texture feature n, ACCn 
1: Perform the registration with the texture feature 0 and constrain the optimization method 

with CR0. 
2: for n=1 to the number of available features do   
3:        Set the initial transformation of the registration to the resulting transformation of the 

stage n-1. 
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4: Perform the registration with the texture feature n and constrain the optimization 
method with ACCn-1+ACCn. 

5: end for  
 
 

The registration is schematically shown in Fig. 4.  
 

The registration algorithm assumes that the features chosen by the selection step have 
been extracted from the image pair to be registered. It also assumes that in a selection step the 
estimates of ACC  and CR  for those features have been obtained and stored. Those estimates 
are used for constraining the optimization at each of the registration stages. Each registration 
stage starts with the transformation from the preceding stage, and the optimization is 
constrained to minimize the risk of non-convergence, especially when less-robust features on 
the higher stages are used.  
 

 
 
Fig. 4. Schematic representation of  Algorithm 2 for a three-stage 1D registration case. In the 
first stage the robust feature (criterion function 0) is used. After reaching the global maximum 
of the robust feature (GM0) registration proceeds toward the gold standard (GS) using the 
second-stage feature (criterion function 1), which is more accurate, but with a shorter capture 
range than the robust feature. Finally, the registration follows the second accurate feature 
(criterion function 2) to travel from the global maximum of the second feature (GM1) to the 
global maximum of the third feature (GM2), which is sufficiently close to our gold-standard 
(GS). 
 

2.5. Experimental data set 

The experimental data set consisted of 11 pairs of DRR and EPI images of the pelvis. 
Examples of both modalities can be seen in Fig. 5.  
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Fig. 5. An example of one of the intensity image pairs. a) The reference image of resolution 
582 x 517 pixels of size 0.56 x 0.56 mm. b) The floating image of resolution 495 x 364 pixels 
of size 0.52 x 0.52 mm.  

 
 

Several attempts to register EPI and DRR images using just intensity information have 
been published [30,31,32,33]. The authors report a successful registration by applying 
intensity-based methods. However, in our studies we were unable to obtain satisfactory results 
from our data set using just intensity information. A visual inspection of our EPI images 
revealed that our images, obtained by radiologists during actual therapy, had markedly lower 
contrast than in some of the related studies [32]. While we are unsure about the reasons for the 
lower contrast of our images in comparison to some other studies, it may be because our 
images originate from clinical practice, where image quality may be sacrificed to satisfy other 
criteria. However, since both DRR and EPI images depict the same anatomy, it was 
reasonable to expect [8,15] that the texture-based registration would perform better than the 
intensity-only registration.  

The images used for the tests were initially roughly aligned. The initial image 
alignment was achieved using three lasers (sagittal, coronal and axial) to mark the patient’s 
reference coordinates [34]. To obtain the gold-standard (GS) alignment needed to evaluate the 
proposed registration method, the following procedure was used.  

Five radiotherapy experts were asked to identify at least five corresponding points for 
each of the 11 image pairs. These correspondences were used to estimate the transformation 
parameters between both the images of an image pair. If we found that, after the 
transformation was estimated, the target registration error (TRE) Eq.(7) of the manually 
placed points was larger than 3 mm (clinically motivated bound), the expert was asked to 
repeat the manual process. GST  in Eq.( 7) was, for this case, an identity matrix. This procedure 

was repeated until the TRE for each image pair and each expert was below 3 mm. The final 
mean values of the TRE across all the experts for each image pair are shown in Table 3. The 
TRE is computed as follows:  
 
 GS DRR estimated EPITRE T p T p= ⋅ − ⋅  (7) 
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where DRRp  denotes points identified on a reference DRR image and EPIp  denotes points 

identified on a floating EPI image. GST  denotes the gold-standard transformation and estimatedT  
denotes the estimated transformation.  
 

Image pair TRE [mm] 
01 1.7 ± 0.7 
02 3.0 ± 1.7 
03 1.6 ± 0.7 
04 1.7 ± 0.8 
05 1.8 ± 1.1 
06 2.9 ± 1.4 
07 1.6 ± 1.0 
08 1.6 ± 0.9 
09 1.6 ± 1.1 
10 2.1 ± 1.0 
11 1.9 ± 0.9 

 
Table 3. Final TRE across the experts for each image pair. The results are given as average ± 
standard deviation. 
 

 
All the correspondences (from all the experts) for each image pair were used to obtain 

the master transformation – a gold-standard transformation ( GST ) for that particular image 

pair. Using the gold-standard transformation the images were transformed into an aligned 
position that was the starting point for all our experimental work. The final tolerance of our 
GS registration, (2.0 ±  1.0) mm, was obtained by observing the TRE across all the points, 
images, and experts.  

2.6. Experimental design 

The registration evaluation experiment was designed as follows. Since our data set contained 
only 11 image pairs with the corresponding gold standard, we used leave-one-out cross 
validation. In each of the 11 test runs, one image pair was withheld from the set, leaving 10 
“training” image pairs. This reduced data set was then used to run Algorithm 1 to select the 
texture features for the actual registration. Then, the image that was withheld from the training 
set was registered using those features. In all cases, Algorithm 1 decided that a two-stage 
registration was sufficient.  

Examples of some of the texture features can be seen in Fig. 6. The texture features 
shown correspond to the image pair shown in Fig. 5, and were selected when this image pair 
was withheld from the training data set.  
The parameters i

ACC , i
RON  and i

CR  were obtained using the evaluation protocol, as 
defined in Section 2.1. The values of i

RONQ  and i

ACCQ  were derived from the obtained 

parameters, using Eq.( 4) and Eq.( 5), respectively.  
After each of the image pairs was registered we measured the success rate of the 

registration (SR%). This success rate was defined as the percentage of registration 
transformations that, when applied to the gold-standard points, resulted in a target registration 
error (TRE) Eq.( 7) lower than the clinically motivated bound, determined by several 
thresholds.  
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Fig. 6. Some examples of texture-feature images. The notions best and worst are in the 
context of the test run, when this particular image was absent from the training data set. 
Images in the left column depict Laws’ texture-feature images extracted from a DRR intensity 
image. The texture-image resolution is 469 x 425 pixels of size 0.56 x 0.56 mm. The 
dimensions of the texture images are smaller, since we had to crop the images to get rid of the 
filtering artifacts at the image borders. The images in the right-hand column depict Laws’ 
texture-features extracted from an EPI intensity image. The texture-image resolution is 436 x 
309 pixels of size 0.52 x 0.52 mm. 
 
 

In the first group of experiments, we tested the intensity-based registration. In our 
framework this was a single-stage registration with the image intensity values in place of the 
texture features. Based on our initial tests we expected that such a registration would, in 
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general, not be sufficient.  
In the second group of experiments, we tested the proposed method for texture-based 
registration, as defined by Algorithms 1 and 2. Following the instructions from Algorithm 1, a 
two-stage approach was used. The chosen features for the first and second stages of the 
registration are shown in the first and second rows in Fig. 6, respectively. The registration was 
performed, as specified by Algorithm 2.  

2.7. Experimental evaluation 

In each experimental group, we performed registrations on a randomly selected set of initial 
displacements. The initial displacements were obtained as follows. The components of a 3D 
vector [ ]Tx y φ, ,  were generated randomly, using a pseudo-random generator. The vector, 
representing a particular displacement, was then classified into one of the five ranges, based 
on its absolute value. The procedure was repeated until we obtained 20 displacements in each 
range. The range boundaries were defined as shown in Table 4.  
 
Table 4. 100 initial displacements from the GS in the range from 0 to 20 mm. 
 

Nr. of 
displacements 

Range in 
[mm] 

Average 
displacement in 
the range [mm] 

20 
20 
20 
20 
20 

0-5 
5–7.5 
7.5-10 
10-15 
15-20 

4.0 ± 1.0 
6.7 ± 0.7 
9.0 ± 0.6 
12.8 ± 1.9 
17.6 ± 1.4 

 
 
The same set of displacements was used in all the experiments. In each experiment we 

used each of the displacements as an initial displacement from the gold standard and then 
applied the registration algorithm. If the resulting TRE, as measured by the residual 
displacement of the gold-standard points, was smaller than a specified threshold, the 
registration was pronounced successful. Therefore, the final result is the percentage of 
successful registrations for each of the displacement ranges. We used a set of thresholds (2 
mm, 3 mm, 5 mm, 7 mm and 10 mm) to illustrate how the registration would perform for 
different clinical treatments, allowing different tolerances. The selection of the thresholds was 
mainly motivated by the feedback from the radiotherapy experts. The threshold of 3 mm 
corresponds to the upper boundary of our gold standard ((2 ±  1) mm).  

3. Results 

3.1. Texture-feature-based registration performance 

First, we performed intensity-based registration as a part of our experimental work to be able 
to compare it with our texture-feature-based registration. The success rates (SR%) for 
intensity-based registration are shown in Table 5.  
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Table 5. Registration success rate (SR%) using intensity features. The values of SR% are 
given for five different thresholds. 

 
Thresholds [mm]: Range of 

displacements [mm] 2 3 5 7 10 
0-5 7% 22% 31% 33% 36% 

5-7.5 5% 15% 20% 22% 25% 
7.5-10 5% 14% 20% 23% 28% 
10-15 4% 11% 15% 16% 19% 
15-20 7% 10% 11% 11% 12% 

 
 

Our proposed method was tested as follows. Using Algorithm 1, we selected two 
features for two-stage registration in each run. According to the leave-one-out cross-validation 
principle, selection was made from ten image pairs. Then, the image pair that was not used for 
the feature selection was registered using the selected features.  

Algorithm 1 selected the same robust feature in all the test runs. It is clear from the 
first row of Fig. 6 that the selected feature is heavily smoothed and depicts the main 
anatomical structures in both images. A feature with similar characteristics would probably be 
intuitively selected if the selection had been manual. The choice of accurate feature alternated 
between two features, one of which is shown in the second row of Fig. 6. Neither of the 
features is heavily smoothed and both include only detailed structures. This is important for 
the registration accuracy. Note also that the accurate feature, derived from EPI image, as 
shown in the second row in Fig. 6, contains a slightly visible grid-like pattern. This pattern is 
invisible on the original images, but it cannot be avoided, as it is caused by the mechanical 
setup of the imaging device. However, since there are no corresponding artifacts on the DRR 
images, it should have no significant influence on the registration. The results for the selected 
features are shown in Table 6.  

 
Table 6. SR%, obtained using two-stage registration with features selected according to 
Algorithm 1. The values of SR% are given for five different thresholds. 
 
 

Thresholds [mm]: Range of 
displacements [mm] 2 3 5 7 10 

0-5 37% 86% 96% 100% 100% 
5-7.5 35% 75% 85% 91% 98% 

7.5-10 28% 67% 79% 86% 94% 
10-15 18% 40% 49% 56% 64% 
15-20 10% 18% 20% 23% 25% 

4. Discussion 

It is evident from Table 5 that intensity-based-registration was not able to properly register 
images, even for the smallest initial displacements. The intensity-based method reached, at 
best, a 36% success rate for a very loose threshold of 10 mm. Even for low initial 
displacements this method diverged significantly – for an initial displacement range of 0–5 
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mm almost 70% of the results fell outside the 7-mm threshold. This test illustrates that the 
combination of DRR and EPI images is not a trivial registration problem.  

It is clear that the registration using the proposed method (Table 6) performs 
significantly better than intensity-based registration. For example, the registration results for 
initial displacements of 5–7.5 mm were, for the proposed method, successful in 75% of cases 
for the clinically motivated threshold of 3 mm, whereas the intensity-based registration 
succeeded in only 15% of cases. Even for the most demanding threshold of 2 mm it performs 
better than the intensity-based registration, regardless of the threshold used.  

In addition to the above-described experiments, individual elements of the proposed 
method were tested as well. Those results are briefly summarized to keep the presentation 
concise.  

In all cases, discarding the principles outlined in Algorithm 1 yielded significantly 
worse results than shown above in Table 6. For example, when the worst features (quality-
wise, as determined by QRON and QACC) were used for the registration instead of those 
recommended by Algorithm 1, the SR% reached only 15% for a threshold of 3 mm and an 
initial range of displacements of 5–7.5 mm. This is in stark contrast to the results of our 
method, where this value reached 75%. From looking at the worst features, as shown in the 
lower half of Fig. 6, this is not surprising. It is clear that they have very little resemblance to 
the anatomical structures of the pelvis, especially when compared to the best features, shown 
in the upper half of Fig. 6.  

The two-stage registration with the features that violated the daisy-chain condition 
from line 22 in Algorithm 1 also performed badly. For a threshold of 3 mm and an initial 
range of displacements of 5–7.5 mm the SR% reached only 55%.  

To illustrate the importance of the multi-stage method, we performed single-stage 
registration experiments. In the first experiment the robust feature from the two-stage method 
was used alone, and in the second experiment the accurate feature from the two-stage method 
was used alone. The proposed two-stage method outperformed both single-stage registrations 
with either of the best features. In the single-stage registration with the robust feature, the 
SR% reached 75% for a threshold of 3 mm and initial range of displacements of 5–7.5 mm, 
which is the same performance as in our method. However, for a threshold of 2 mm, the SR% 
reached only 19%, which is much worse than with our method, where the comparable value 
was 35%. A single-stage registration with the accurate feature yielded a SR% of 31% for a 
threshold of 3 mm and an initial range of displacements of 5–7.5 mm, which is again 
significantly worse than with our method.  
 

5. Conclusions 

We have presented a novel method for the multi-stage texture-based registration of medical 
images. Some images, for example, the DRR and low-contrast EPI images used in this study, 
proved to be difficult to register using intensity information alone. Thus, texture-based 
registration was used instead. There is a myriad of texture features available for registration; 
however, we cannot expect that the same texture feature would be universally appropriate.  
Our framework provides the means for a consistent selection of the most appropriate features 
for registration from the large number of texture features. We designed a multi-stage 
registration method that allows robust registration using robust but inaccurate features in the 
first stage, and then daisy-chaining successively less robust, but more accurate features.  

In this study, rotationally invariant Laws’ texture features were used. Nevertheless, 
other texture features could be used or added without affecting other components of the 
proposed method. Moreover, it could be viewed as a flexible way to fuse many different 
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image features. In these experiments we have demonstrated that our approach takes advantage 
of either robust or accurate features.  

In general, the texture-based registration performed better than the intensity-based 
registration. We also showed that not all the texture features are appropriate for a given 
registration task. The experiments have shown that, overall, for our image data set, the multi-
stage registration provides better results than single-stage registration.  

The main drawback of our method is that a sufficiently large data set of representative 
image pairs with the available gold standard is available. On the other hand, this data set is 
used in the selection step not only to select texture features for later registration, but also for 
estimating whether the available set of features is sufficient for the particular class of 
registration problems. The selection step can already point to individual image pairs that 
diverge from the rest of the data set. Thus, we can predict the performance of the registration, 
before the actual registration is performed. Our method also assumes that the image data set 
available for the selection step is representative. We expect that to obtain a representative data 
set the procedures of the image acquisition would have to be standardized to a significant 
degree, to minimize the variations in the obtained images.  

In our future work we plan to evaluate the proposed method using a larger data set and 
a larger number of texture features, which will, consequently, demand more computational 
power. 
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