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Abstract: In our research we aim to reduce the computation time spent on the evaluation protocol of a criterion function for rigid registration tasks. The 
basic evaluation protocol is performed on N uniformly distributed sampling lines in the K-dimensional transformation space. Similarity between two 
images is measured at each of the equidistantly placed points on each sampling line, which is a computationally intensive process. We hypothesize that 
the computational complexity can be reduced if attention is paid to the selection method of the sampling lines. In the research we compared four 
sampling methods which affect density and distribution of sampling lines: basic regular sampling, pseudo-random, Sobol quasi-random and Halton 
quasi-random sampling. We show that the use of Halton quasi-random generator yielded the most uniform distribution of sampling line. Thus, with 
proper sampling, the number of sampling lines could be systematically reduced in comparison to pseudo-randomly generated lines. This would result in 
shorter computation time spent on the protocol. The reduction of computation time is especially important when many criterion functions need to be 
evaluated (e.g. texture feature based image registration). The evaluation protocol was tested on a set of 11 2-D DRR (Digital Reconstructed Radiograph) 
and EPI (Electron Portal Image) image pairs. The tests have been conducted on intensity feature images as well as texture feature images extracted from 
the original intensity images. The paired Student's t-tests (p<0.05) indicated that results obtained from Halton quasi-random sampling were statistically 
significantly more consistent than the results based on regular or pseudo-random sampling. 
 

UČINKOVITO VZORČENJE ZA VREDNOTENJE KRITERIJSKIH FUNKCIJ 
ZA 2-D TOGO PORAVNAVO SLIK 

Ključne besede: poravnava slik, vrednotenje kriterijskih funkcij, pseudo-nakjučno vs. kvazi-naključno vzorčenje. 
 
Izvleček: V svojih raziskavah poskušamo zmanjšati čas, ki je potreben za kvantitativno vrednotenje kriterijskih funkcij pri togi poravnavi slik. Osnovni 
protokol za vrednotenje kriterijskih funkcij temelji na N naključno porazdeljenih vzorčnih premicah v K-dimenzionalnem prostoru parametričnega 
transformacijskega modela. Podobnost med slikama izračunamo v ekvidistančnih točkah, ki ležijo na N vzorčnih premicah. Računanje podobnosti med 
slikama je računsko potraten postopek. Predpostavljamo, da bi računsko zahtevnost postopka zmanjšali, če uspemo najti optimalno metodo vzorčenja za 
generiranje vzorčnih premic. V ta namen med seboj primerjali štiri različne metode vzorčenja, ki vplivajo na gostoto in porazdelitev vzorčnih premic v 
prostoru. Metode vzorčenja, ki smo jih v testih med seboj primerjali, so bile naslednje: enakomerno vzorčenje po mreži, pseudo-naključno, Sobol kvazi-
naključno in Haltonovo kvazi-naključno vzorčenje. Iz rezultatov testov se je izkazalo, da nam Haltonovo kvazi-naključno vzorčenje omogoča najbolj 
enakomerno in s tem »pravično« porazdelitev vzorčnih premic v prostoru. Enakomerna porazdelitev premic bi nam omogočila, da bi število vzorčnih 
premic lahko sistematično zmanjšali v primerjavi s številom pseudo-naključno generiranih premic. Zmanjšanje števila premic bi direktno pomenilo 
skrajšanje računskega časa, potrebnega za vrednotenje kriterijskih funkcij. Pohitritev postopka za vrednotenje kriterijskih funkcij še posebej pride do 
izraza v primerih, kjer je potrebno ovrednotiti večje število kriterijskih funkcij, za primer, poravnava s teksturnimi značilnicami. Teste različnih vzorčenj 
smo izvedli na setu 11-ih dvodimenzionalnih DRR (Digital Reconstructed Radiograph) in EPI (Electron Portal Imaging) slikovnih parih. Teste smo 
izvedli tako na originalnih svetlostnih slikah kot tudi na slikah teksturnih značilnic. Studentov t-test (p<0.05) je pokazal, da so rezultati, dobljeni na 
podlagi Haltonovega kvazi-naključnega vzorčenja statistično signifikantno bolj konsistentni od rezultatov, dobljenih z uporabo pseudo-naključnega 
vzorčenja. 

1 Introduction 

Clinical diagnosis, as well as therapy planning and 
evaluation rely increasingly on multiple images of 
different modalities. For example, in radiation therapy 
planning a CT (computer tomography) scan is needed for 
dose distribution calculations, while the contours of the 
target lesion are often best outlined on MRI (magnetic 
resonance image) /1/. Image registration is a procedure, 
where images of the same anatomical structures, acquired 
using the same or different imaging devices, are brought 
into the best possible spatial correspondence with respect 
to each other. Image registration is therefore a 
fundamental step of information integration. Detailed 
classifications of registration techniques applied to 
medical images have been reviewed in a number of 
surveys /2,3,4,5,6,7/.  

In general, image registration is implemented as 
an optimization task of finding such transformation 

parameters that maximize or minimize a criterion 
function (CF), which measures a similarity between 
images as a function of registration. A criterion function 
can be considered as a function mapping from K-
dimensional continuous space to a subset of a real line, 
where K is the number of parameters (degrees of 
freedom) of the parametrical spatial transformation model 
/8/. For example, for rigid registration of two-
dimensional (2-D) or three-dimensional (3-D) images the 
value of K  is 3 or 6, yielding in 3-D or 6-D optimization 
problem, respectively. The outcome of registration 
heavily depends on the criterion function profile.  

The quality of CF in terms to registration, as 
proposed by Škerl et al, can be described by the following 
parameters: accuracy (ACC), risk of non-convergence 
(RON), distinctiveness of the global extremum (DO) and 
capture range (CR) /8/. First, the accuracy of the CF is 
defined as a distance from an optimum of the CF to the 
’gold standard’ transformation, which corresponds to the 
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aligned position of images. Next, the risk of non-
convergence is a measure of robustness of CF. It includes 
the number, position and distinctiveness of local extrema. 
RON also describes how sensitive is a CF to 
interpolation, sampling, partial image overlap and noise. 
A DO measures how distinctive is a maximum 
(minimum) in respect to the decreasing (increasing) 
values of CF away from the optimum. Capture range is 
referred to a limited range of transformations around the 
optimum for which CF is a monotonic decreasing 
(increasing) function.  

Exhaustive search of the parametrical 
transformation space would be an obvious and the most 
precise method to evaluate CF prior to registration at 
every transformation estimate in K-dimensional space. 
However, in terms of computational demands, this 
approach is prohibitory expensive.  

Let us take for example a simple 2-D rigid 
registration problem with K=3 transformation parameters 
(two translations and one rotation), with a grid step size 
of 1 mm and a capture range of 50 mm. For these modest 
requirements we would get 503 (=125 000) 
transformation estimates at which CF should be 
evaluated. If the same requirements were to be met for a 
3-D registration problem with K=6 degrees of freedom (3 
translations, 3 rotations), 1.56·1010 estimates of CF would 
follow.  

The protocol for evaluation of similarity 
measures for rigid registration /8/ is an improvement of 
the exhaustive search method, as it applies random 
sampling to the parametrical space. The protocol has been 
tested for various multi-modal rigid registration tasks, 
therefore it is becoming a reference method for 
evaluation of similarity measures. It was devised by Škerl 
et al /8,9,10/. The continuous K-dimensional space is first 
normalized so that equal changes of each of the 
parameters in the normalized parametrical space produce 
the same mean voxel shift. Next, the normalized K-
dimensional space is "pierced" by N randomly selected 
lines, where the intersection points with a hyper-sphere 
are uniformly distributed on the surface of the hyper-
sphere with radius R. All sampling lines converge in the 
’gold standard’ (GS) transformation which corresponds to 
the aligned position of two images. Each sampling line is 
subsequently sampled by M equidistant points and the 
step size between points is defined as (2R/M). Let’s 
denote X0 as the origin or GS transformation and Xn,m as 
one of the sampled points. Each of Xn,m represents a K-
dimensional vector of transformation parameters (see 
(Figure 1 1))  

For the evaluation protocol as described above, 
the density and distribution of sampling lines are crucial 
to obtain representative estimates of the continuous K-
dimensional transformation space. Following the 
recommendations in /8/, the number of sampling lines N, 
defined by a pseudo-random generator should be set to 50 
for a 6-D optimization task. This way, sampling points 
should be uniformly distributed on the surface of a 

                                                
1The figure is upgraded from /8/. 

sphere.  

 

Fig. 1. 2-D parametrical space, sampled by N lines and M 
points per line. The maximal displacement from the GS is 
denoted by R, which is a radius of the K-dimensional 
hyper-sphere. M and R define the step size between 
sampling points: 2·R/M. The left figure depicts sampling 
lines, which directions are generated by pseudo-random 
generator. The right figure depicts sampling lines, which 
are maximally avoiding each other.  

Nevertheless, examples in the literature show 
that pseudo-random generator is not the optimal choice to 
fill a n-dimensional space uniformly. Sequences of n-
tuples that fill n-space more uniformly than uncorrelated 
random points are called quasi-random sequences /11/. 
The main property of sample points given by a quasi-
random sequence is that the points are maximally 
avoiding each other. By this means the same number of 
sampling lines defined by a quasi-random sequence 
should cover K-dimensional space more evenly than if 
lines were defined by a pseudo-random sequence.  

The following example (Figure 2) shows 2500 
points on a sphere, generated by four different sampling 
methods. The first one is an example of a basic regular 
sampling of a sphere, the second one is an example of the 
pseudo-random generated points, the third one for the 
Sobol quasi-random /12/ and the last one for the Halton 
quasi-random sampling method /13/.  

One can notice, that point density increases 
towards the poles when the basic regular sampling of a 
sphere is used. Furthermore, the pseudo-random 
generated points build small clusters and the vacant space 
between them is evidently large. The Sobol quasi-random 
generator delivers more uniform distribution of the points 
and less vacant space between them. One can see, that the 
most uniform distribution of the points is generated by 
Halton quasi-random generator.  

The aim of this paper is to evaluate the 
performance of the evaluation protocol by comparing the 
consistency of its results for three random sampling 
methods: pseudo-random, Sobol quasi-random and 
Halton quasi-random. In addition, the comparison has 
been performed for the use of basic regular sampling 
method. Our goal is to find the sampling method that 
would exhibit similar consistency as the accepted pseudo-
random sampling, but with significantly reduced number 
of sampling points. The comparisons were conducted on 
a set of 11 2-D DRR (Digital Reconstructed Radiograph) 
and EPI (Electron Portal image) images. The evaluation 
protocols have been applied not only to criterion 
functions based on intensity features but also to several 
texture feature images extracted from original intensity 
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images/14/. 

 
Fig. 2. 2500 points generated by four sampling methods. 

 
Generally, a large number of texture features 

may be extracted from intensity images. Therefore, the 
evaluation protocol should be conducted as many times 
as many features (or potentially their combinations) are 
available. In general, this may be more than 100 times. If 
the number of sampling lines was reduced in comparison 
to the pseudo-random sampling, the time spent on the 
protocol would be reduced as well and one could evaluate 
considerably larger number of criterion functions.  

We anticipate that the modified evaluation 
protocol - as proposed in this paper - will be used for the 
evaluation of a larger number of texture feature based 
criterion functions prior to registration. The final goal is 
to select the most appropriate features for a specific 
registration task. Reduced computational time directly 
increases the number of texture features that we can 
afford to evaluate. This increases the chance the best 
features will be found.  

This paper is organized as follows: first, the 
generation of sampling lines is described in detail. Then, 
the design of experiments is presented and the data set on 
which the tests have been conducted is introduced. 
Finally, some details about texture features used for 
registration are explained, and the comparisons of results 
among different sampling methods are shown. Discussion 
and conclusions complete the paper.  
 

2 Methods and materials 

2.1 Generation of sampling lines 

In our modified evaluation protocol, the sampling 
lines in 3-D parametrical space (two translations and one 
rotation) are generated first by use of the Sobol quasi-
random and second by Halton quasi-random generator. 
To compare with random sampling methods, the 3-D 
parametrical space is additionally sampled by a basic 
regular sampling. 

The azimuthal angle φ and the polar angle θ of 
spherical coordinates are the outputs of the regular 
sampling or the quasi-random generators. r is a distance 
(radius) from a point to the origin (Figure 3). 

The spherical coordinates (r, φ, θ) are related to the 
Cartesian coordinates (x, y, z) by the following equations 
/15/: 

  x = rcos( )sin( )ϕ θ    (1) 

  y = rsin( ) sin( )ϕ θ    (2) 

  z = rcos( )θ     (3) 

where r œ [0,∂), φ œ [0,2π] and θœ [0,π]. 

Each of the N sampling lines in 3-D parametrical 
space is defined by randomly selected starting position 
Xn,-M/2 on a sphere at the distance R from the origin and 
its mirror point Xn,M/2. The starting points are defined by 
a 3-D vector [x,y,z] (Eq. (1), (2) and (3)).  

 

Fig. 3. Our notation of 3-D spherical coordinates. 

The following two examples (Figure 4) show 
2500 points generated by the method as described above. 
In the first example, the Cartesian coordinates of the 
points are defined by the Sobol quasi-random generator 
and in the second example by the Halton quasi-random 
generator.  

 

 

Fig. 4. Distribution of sampling points, where angles φ and 
θ have been selected by quasi-random generators. 

It can be easily seen that points are not 
uniformly distributed over the sphere surface since they 
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group in two clusters at the poles. The reason is, that the 
area element dΩ = sin(θ)dθdφ depends on θ, and 
therefore points selected in this way are clustered near the 
poles /16/. To obtain points such that any small area on 
the sphere is expected to contain the same number of 
points, we choose u and v to be quasi-random variants on 
[0,1]. Then: 

2 u

 = arccos(2v - 1)

ϕ π

θ

=
   (4) 

gives the spherical coordinates for a set of points, which 
are uniformly distributed over Ω. 

Using this correction, the uniformity of sampling 
points improves as shown in Figure 2. The above 
correction was used throughout the paper for all but 
regular sampling methods. 

2.2 Test image set 

The tests have been conducted on 11 pairs of DRR 
(Digital Reconstructed Radiograph) and EPI (Electron 
Portal Imaging) images of the pelvis (Figure 5). By 
correctly matching the two modalities, it is possible to 
verify the positioning of the patient during radiation 
therapy and automatically adjust the positioning if 
necessary.  
 

 
Fig. 5. An example of one of the intensity image pair. 
(a)The reference image of resolution  582 x 517 pixels of 
size 0.56 x 0.56 mm. (b) The floating image of resolution 
495 x 364 pixels of size 0.52 x 0.52 mm. 

 

Fig. 6. (a) Laws texture feature extracted from the 
intensity image of the reference DRR image. Dimensions 
of the texture images are smaller, since we had to crop 
the images to get rid of the filtering artifacts at the image 
borders. (b) Laws texture feature extracted from the 
intensity image of the floating EPI image.  

The registration of DRR/EPI images is not a 

trivial problem due to 2-D representation of 3-D data. 
Several papers have been published proposing and/or 
investigating various registration methods using these 
image modalities for patient positioning 
applications /17,18,19/. However, we found that intensity 
based registration is not reliable, since the intensity 
features do not comply with some global intensity 
relationship, expected by intensity-based registration 
approaches/20/. Therefore, an alternative registration 
approach based on texture features has been proposed to 
register DRR/EPI images/14/.  
The images used for the tests were initially aligned as 
they were used during the radiotherapy practice. The 
image alignment is achieved with employment of three 
lasers (sagittal, coronal and axial) for marking the patient 
reference coordinates/21/. The gold standard-GS 
registration in our tests was a transformation vector 0 
with its tolerance of 3 mm. However, due to the design of 
our experiments imprecise GS registration did not 
influence our results.  

2.3  Experiment Design 

The comparison between the reference evaluation 
protocol, as implemented by the authors /22/ and three 
modified versions of the protocol has been performed. 
The modified versions used regular sampling, Halton and 
Sobol quasi-random sampling instead of pseudo-random 
sampling. 

First, tests on the intensity images have been 
conducted. We assume, that images of each image pair 
are initially aligned. Mutual information (MI) /23,24,5/ 
has been used to measure similarity between the 
reference and the transformed floating image at each 
sampling estimate Xn,m. MI was estimated from joint 
density, which was approximated by using a Parzen 
kernel. The Parzen kernel was applied to the 2-D joint 
histograms, quantized into 256 x 256 bins. Each joint 
histogram was created by plotting an (i,j) point for every 
pair of corresponding pixels in the overlap region, where 
i was the pixel intensity in the reference image, and j was 
the interpolated pixel intensity of the floating image. 

The experiments were designed exactly as described 
in /22/ except for the number of sampling lines N and the 
way those lines were generated. The number of sampling 
lines has been systematically lowered from the 
recommended value of 50 in steps of 5: N=50, 45, 40, ..., 
10, 5, 1. The normalization parameters used to generate 
sampling lines are listed in Table 1. For the parameter 
explanation see /8/.  

Each sampling line provides a transformation profile 
of a criterion function. To observe the behavior of 
criterion functions we checked two parameters: accuracy 
(ACC) and risk of non-convergence (RON). Accuracy as 
it is defined in /8/ is a root mean-square of distances 
between the maximum value of a criterion function Xn,max 
and origin X0 on each of the n sampling lines; n=1,2,…N. 
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= −∑
  (5) 

 
 

Tab.1. Floating image sizes, pixel sizes, translation and rotation units of normalized parametrical space, radius R, number 
of points along a line M and a step size between two sampling points. 

 

 
Risk of non-convergence RON(r) is defined as the 
average of positive gradients dn,m within distance r from 
each of the N global maxima:  

max

1 max

1
( )

2

N k

n m

n m k

RON r d
rN

+

,

= = −

= ∑ ∑
 (6) 

 
In our tests, the consistency of ACC and RON values 
between sampling lines has been compared for four 
different sampling methods. Furthermore, the consistency 
check of ACC and RON values have been performed for 
reduced numbers of sampling lines.  
Moreover, the original and the modified evaluation 
protocols have been applied to the texture feature images 
(Figure 6) and the results have been compared. The 
conveyed texture information between texture images 
was measured again by MI.  
The experiment details are identical as described above. 
Again, the effect of using the pseudo-random, regular or 
quasi-random generator was observed, while lowering the 
number of sampling lines from 50 in steps of 5.  
 

2.4  Texture features used for registration 

Apart from intensity images, the evaluation protocols 
have been tested on Laws texture features, which were 
extracted from both of the original intensity images. Laws 
/25/ developed a set of two-dimensional filter masks, 
which are composed of combinations of several one-
dimensional filters /26/.  

For the tests we chose Laws texture features 
extracted by combinations of level-L and spot-S filter 
masks. Both 1-D filters were of size 20 mm. L-S texture 
features were summed up with texture features obtained 
by S-L filter masks /25/, again of size 20 mm.  
Each filtered image was subsequently converted to a  

 
texture energy image. Texture energy image was obtained  
by convolving the local texture feature image by a 
Gaussian averaging window. We used a Gaussian kernel 
of size 20 mm and cut off frequency at 3σ. Finally, the 
2% extreme values of each texture energy image were 
saturated and the rest were scaled from 0 to 255 integer 
level yielding 8-bit quantization. See Figure 6.  

2.5 Criterion functions 

Our criterion functions are computed by measuring the 
conveyed intensity and texture feature information 
between images being registered. We choose mutual 
information (MI) to measure similarity between images. 
MI can be computed by using the following formula:  

( ) ( ) ( ) ( )MI A B H A H B H A B, = + − ,  (7) 

 
with H(A) and H(B) are the Shannon entropies of image 
features for both of the images and H(A,B) is their joint 
entropy. Entropy H(·)is computed as:  

2( ) ( ) ( )
i

H p i log p i⋅ = − ⋅∑
  (8) 

where p is a probability distribution of features on an 
image.  
 

3 Results and discussion 

3.1 Test on intensity features 

The tests are performed on 11 DDR/EPI image pairs 
(Figure 7, 8) following this protocol:  

1. For each of the 11 DRR/EPI image pairs the 
sampling lines in 3-D transformation space are 
generated:   

 Image size (mm) Pixel size (mm) 
Image set X Y X Y 

Unit(mm) Unit(rad) R(mm) M δ(mm) 

01 203 170 0.52 0.52 17.0 0.13 51.0 400 0.26 
02 205 179 0.52 0.52 17.9 0.13 53.7 400 0.27 
03 258 190 0.52 0.52 19.0 0.12 57.0 400 0.29 
04 203 151 0.52 0.52 15.1 0.12 45.3 400 0.23 
05 246 140 0.52 0.52 14.0 0.10 42.0 400 0.21 
06 194 165 0.52 0.52 16.5 0.13 49.5 400 0.25 
07 254 173 0.52 0.52 17.3 0.11 51.9 400 0.26 
08 201 162 0.52 0.52 16.2 0.13 48.6 400 0.24 
09 206 123 0.52 0.52 12.3 0.10 36.9 400 0.18 
10 248 188 0.52 0.52 18.8 0.12 56.4 400 0.28 
11 195 107 0.52 0.52 10.7 0.10 32.1 400 0.16 
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• 400 sampling lines obtained by regular 
sampling of φ and θ,   

• 400 sampling lines for the reference 
evaluation protocol are obtained 
through the web-interface /22/,   

• 400 sampling lines generated by Sobol 
quasi-random generator, and   

• 400 sampling lines generated by Halton 
quasi-random generator.   

 
2. The criterion function is evaluated in each of the 

400 x 400 sampling points Xn,m.   
3. The evaluation parameters of ACC and RON are 

- to consider statistics - calculated for the 
following consecutive sub-ranges of 400 
sampling lines:   

• 8 sub-ranges of 50 sampling lines,   
• 8 sub-ranges of 45 sampling lines,   
• 10 sub-ranges of 40 sampling lines,   
• 11 sub-ranges of 35 sampling lines,   
• 13 sub-ranges of 30 sampling lines,   
• 16 sub-ranges of 25 sampling lines,   
• 20 sub-ranges of 20 sampling lines,   
• 26 sub-ranges of 15 sampling lines,   
• 40 sub-ranges of 10 sampling lines, and   
• 80 sub-ranges of 5 sampling lines.   

 
The results are depicted as scatter of ACC and 

RON values. The scatter is computed as normalized 
standard deviation of the consecutive subranges of 
sampling lines. We expect that better random generator 
would yield lower scatter of the results. Lower scatter 
means more consistent results which is the aim of our 
tests. For purposes of clarity, results are shown only for 
N=50,40,30,20 and 10.  
 

 

Fig.7. Results for intensity features. Box-and-whisker plots 
are showing scatter of values of 11 DRR/EPI image pairs 
for the parameter ACC and four sampling methods: 
regular, pseudo-random, Sobol quasi-random and Halton 
quasi-random, respectively. 

The paired Student’s t-test (p<0.05) which 
compares the scatter of ACC values in Figure 7 of the 
four sampling methods indicated no significant difference 
between pseudo-random and Sobol-quasi random 
sampling at any of different numbers of sampling lines. 
On the other hand, there exists significant difference 

between results of pseudo-random and Halton-quasi 
random sampling when the analysis is performed on 
N=40,30,20 and 10 sampling lines. In these cases the 
pseudo-random generator based results show significant 
higher scatter of the values in comparison to Halton 
quasi-random sampling based results. However, there 
exists no significant difference between results of the two 
generators when the analysis is performed on N=50 and 
N=5 sampling lines. 50 sampling lines seems to be 
enough in 3-D transformation space to overcome a 
deficiency of pseudo-random generator, but 5 sampling 
lines are too few to achieve satisfactory consistence even 
with Halton quasi-random sampling.  

The comparison between regular and pseudo-
random sampling shows significantly higher scatter of 
ACC values for N=20 when the regular sampling method 
is employed.  
 

 

Fig.8. Results for intensity features. Box-and-whisker plots 
are showing scatter of values of 11 DRR/EPI image pairs 
for the parameter RON and four sampling methods: 
regular, pseudo-random, Sobol quasi-random and Halton 
quasi-random, respectively. 

Similar to the scatter of ACC values, the paired 
Student’s t-test (p<0.05) indicated no significant 
difference between pseudo-random and Sobol-quasi 
random sampling based scatter of RON values in 
Figure 8. However, Halton quasi-random sampling 
yielded significantly lower scatter of RON values for all 
but N=5 sampling lines in comparison to pseudo-random 
sampling. Again, the reason is that 5 sampling lines are 
too few to cover 3-D transformation space dense enough 
with any of the generators.  

The regular sampling shows no significant 
difference in the scatter of RON values compared to 
pseudo-random based results for any of N sampling lines.  

3.2  Tests on texture energy images 

The tests are performed on 11 texture image pairs derived 
from original intensity images (Figure 9, 10). The 
experiment protocol is the same as the one used for 
intensity features.  
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Fig.9. . Results for texture features. Box-and-whisker plots 
are showing scatter of values of 11 DRR/EPI image pairs 
for the parameter ACC and four sampling methods: 
regular, pseudo-random, Sobol quasi-random and Halton 
quasi-random, respectively. 

 

 

Fig.10. Results for texture features. Box-and-whisker plots 
are showing scatter of values of 11 DRR/EPI image pairs 
for the parameter RON and four sampling methods: 
regular, pseudo-random, Sobol quasi-random and Halton 
quasi-random, respectively. 

Note, that overall, the scatter values are much 
lower for texture features in comparison to intensity 
features. This is a strong argument to use texture features 
instead of intensities for this registration task. However, 
from the tests performed on the texture feature images 
similar conclusions may be drawn than from the results 
for intensity features. Again, the Halton quasi-random 
sampling outperformed both regular and pseudo-random 
sampling as it yielded more consistent results for both, 
ACC and RON values. Student t-test indicates significant 
difference between samplings for all systematically 
reduced number of sampling lines, except N=30 - ACC 
values and N=5 - RON values.  

The recommended number of sampling lines N 
which would yield enough consistent results for our 3-D 
optimization task was initially not provided. Since our 
dimensionality was significantly lower than in the 
original work by Škerl et al, we started our tests with 
N=50 as reasonably safe margin. From the results of our 
tests we can hypothesize that by using Halton quasi-
random generator the smallest number of sampling lines 
N, which would yield enough consistent results for 3-D 
optimization task, is as low as 10. This hypothesis is 
confirmed by paired Student t-test (p<0.05) which 
compared scatter results between pseudo-random N=50 

sampling lines and systematically reduced N from 50 to 5 
for Halton quasi-random generator. t-test indicated that 
for N=50 and N=40 Halton quasi-random delivered 
significantly lower scatter values in comparison to 
pseudo-random sampling with N=50. From N=35 to 
N=10 Halton quasi-random sampling indicated no 
significant difference to pseudo-random sampling with 
N=50. For N=5 Halton quasi-random sampling delivered 
significantly higher scatters in comparison to pseudo-
random with N=50.  

For our registration task the recommended pseudo-
random sampling with 50 sampling lines yields 
comparable scatter of results to the Halton-random 
sampling with 10 sampling lines.  

 

4 Conclusion 

The evaluation protocol described in /8/ assesses the 
quality of similarity measure used in a specific 
registration problem prior to registration. This is done by 
evaluating the behaviour of a similarity measure for 
simulated transformations. The evaluation of a similarity 
measure includes the following parameters: accuracy, 
robustness and capture range.  

We are using this evaluation protocol for 
assessment of criterion functions based on the intensity 
and a bank of texture features – such use requires the 
evaluation of many criterion functions. It is therefore 
important that the evaluation protocol is as efficient as 
possible, while retaining the truthfulness of the results.  

The obtained results from our tests show that 
Halton quasi-random outperformed regular, pseudo-
random and Sobol quasi-random sampling for our 
specific registration task. Additionally, the tests have 
shown, that if the computational time is of prime concern, 
the number of sampling lines may be reduced, which 
yields a significant reduction of computation time spent 
on evaluation of one CF. Thus, a larger number of CFs 
may be evaluated to select those, that would provide the 
best registration.  

Additionally, we can also see that values ACC and 
RON based on texture features deliver considerably lower 
scatters than values based on intensity features. It may be 
concluded that a lower scatter of results may be one of 
the additional parameters to assess the quality of a 
criterion function. The lower the scatter of the results the 
more representative are the criterion functions defined on 
each of the sampling lines. Moreover, it is less likely that 
a criterion function is ill-defined by containing a false 
global optimum and strong local maxima  /27/.  
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